Estrategias de Enseñanza STEM: Un Análisis de Métodos Activos en el Aula
PDF
FLIPBOOK
AUDIO

Palabras clave

aula invertida
realidad aumentada
robótica educativa
aprendizaje basado en proyectos
Gamificación

Categorías

Cómo citar

Herrera-Barzallo, J. G., Hernández-Dávila, C. A., Montes De Oca-Sánchez, I. V., Triviño-Sanchez, J. J., & Vargas-Marín, H. J. (2024). Estrategias de Enseñanza STEM: Un Análisis de Métodos Activos en el Aula: STEM Teaching Strategies: An Analysis of Active Methods in the Classroom. Multidisciplinary Latin American Journal (MLAJ), 2(3), 17-33. https://doi.org/10.62131/MLAJ-V2-N3-002

Resumen

La investigación analiza las estrategias de enseñanza activa en el contexto de la educación STEM, abordando metodologías como la gamificación, el aprendizaje basado en proyectos (ABP), la realidad aumentada (AR), la realidad virtual (VR), la robótica educativa y el modelo de aula invertida. Estas metodologías han demostrado mejorar el rendimiento académico, la retención del conocimiento y el desarrollo de habilidades clave, como el pensamiento crítico, la creatividad y la resolución de problemas. A pesar de los beneficios, su implementación enfrenta desafíos significativos, incluyendo la resistencia de algunos profesores y estudiantes. La investigación destaca que la combinación de métodos tradicionales y activos puede mitigar estos desafíos, creando entornos de aprendizaje más dinámicos y equitativos. Asimismo, se sugiere que el éxito de estas estrategias depende en gran medida de la capacitación y disposición de los docentes, además de un apoyo institucional adecuado. Finalmente, se concluye que las estrategias activas son esenciales para preparar mejor a los estudiantes frente a los retos tecnológicos y científicos del futuro.

PDF
FLIPBOOK
AUDIO

Referencias

Aji, C., & Khan, M. J. (2019). The Impact of Active Learning on Students’ Academic Performance. Open Journal of Social Sciences. https://doi.org/10.4236/JSS.2019.73017

Al-Azawi, R., Albadi, A., Moghaddas, R., & Westlake, J. (2019). Exploring the Potential of Using Augmented Reality and Virtual Reality for STEM Education. 36-44. https://doi.org/10.1007/978-3-030-20798-4_4

Algerafi, M. A. M., Zhou, Y., Oubibi, M., & Wijaya, T. T. (2023). Unlocking the Potential: A Comprehensive Evaluation of Augmented Reality and Virtual Reality in Education. Electronics. https://doi.org/10.3390/electronics12183953

Allendoerfer, C., Kim, M. J., Burpee, E., Wilson, D. M., & Bates, R. (2012). Awareness of and receptiveness to active learning strategies among STEM faculty. 2012 Frontiers in Education Conference Proceedings, 1-6. https://doi.org/10.1109/FIE.2012.6462327

Aris, N., & Orcos, L. (2019). Educational Robotics in the Stage of Secondary Education: Empirical Study on Motivation and STEM Skills. Education Sciences. https://doi.org/10.3390/EDUCSCI9020073

Badia, J. D. (2017). Creative Project-based learning to boost technology innovation. @tic: Revista d’Innovació Educativa. https://doi.org/10.7203/ATTIC.18.9019

Deslauriers, L., McCarty, L., Miller, K., Callaghan, K., & Kestin, G. (2019). Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proceedings of the National Academy of Sciences of the United States of America, 116, 19251-19257. https://doi.org/10.1073/pnas.1821936116

Ferriz-Valero, A., Østerlie, O., Martínez, S. G., & García-Jaén, M. (2020). Gamification in Physical Education: Evaluation of Impact on Motivation and Academic Performance within Higher Education. International Journal of Environmental Research and Public Health, 17. https://doi.org/10.3390/ijerph17124465

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111, 8410-8415. https://doi.org/10.1073/pnas.1319030111

Gao, X., & Schwartz, B. (2015). Classroom Implementation of Active Instructional Strategies for Undergraduate STEM Education. International Journal of Information and Education Technology, 5, 688-692. https://doi.org/10.7763/IJIET.2015.V5.593

Hakim, L., Sulastri, Y. L., Mudrikah, A., & Ahmatika, D. (2019). STEM Project-Based Learning Models in Learning Mathematics to Develop 21st Century Skills. Proceedings of the International Conference of Science and Technology for the Internet of Things. https://doi.org/10.4108/EAI.19-10-2018.2281357

Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance. Comput. Educ., 80, 152-161. https://doi.org/10.1016/j.compedu.2014.08.019

Hativa, N. (2000). Teaching Methods for Active Learning. 111-129. https://doi.org/10.1007/978-94-010-0902-7_8

Jiang, C., & Pang, Y. (2023). Enhancing design thinking in engineering students with project‐based learning. Computer Applications in Engineering Education, 31, 814-830. https://doi.org/10.1002/cae.22608

Lai, C.-L., & Hwang, G. (2016). A self-regulated flipped classroom approach to improving students’ learning performance in a mathematics course. Comput. Educ., 100, 126-140. https://doi.org/10.1016/j.compedu.2016.05.006

Messadi, T., Newman, W., Fredrick, D., Costello, C., & Cole, K. (2019). Augmented Reality as Cyber-Innovation in STEM Education. Journal of Advances in Education Research. https://doi.org/10.22606/JAER.2019.42002

Meza-Navarro, M., Chávez-Árcega, M. A., Ávila-Hernández, J. C., & Avila-Soto, E. A. (2022). The effectiveness of a course taught in the flipped classroom modality. Revista de Didáctica Práctica. https://doi.org/10.35429/jpd.2022.16.6.18.32

Nelson, C. (2012). Generating Transferable Skills in STEM through Educational Robotics. 433-444. https://doi.org/10.4018/978-1-4666-4502-8.CH026

Ortiz-Rojas, M., Chiluiza, K., & Valcke, M. (2019). Gamification through leaderboards: An empirical study in engineering education. Computer Applications in Engineering Education, 27, 777-788. https://doi.org/10.1002/cae.12116

Pan, W., & Allison, J. (2010). Exploring project based and problem based learning in environmental building education by integrating critical thinking. International Journal of Engineering Education, 26, 547-553.

Rayahneh, M. S. Q., & Bataiha, S. S. E. A. (2022). Effectiveness of virtual flipped classroom on science achievement and higher thinking skills development. Cypriot Journal of Educational Sciences. https://doi.org/10.18844/cjes.v17i9.6996

Semanko, A. M., & Ladbury, J. L. (2020). Using the Reasoned Action Approach to Predict Active Teaching Behaviors in College STEM Courses. Journal for STEM Education Research, 1-16. https://doi.org/10.1007/s41979-020-00038-8

Sereeter, B., & Shagdarsuren, L. (2022). Implementation of Robotics Projects for Students. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4040833

Silva, I., Wong, A., Auria, B., Zambrano, D., & Echeverría, V. (2022). Gamification in Engineering Education: Exploring Students’ Performance, Motivation, and Engagement. 2022 IEEE Sixth Ecuador Technical Chapters Meeting (ETCM), 1-6. https://doi.org/10.1109/ETCM56276.2022.9935729

Sun, J., & Wu, Y.-T. (2016). Analysis of Learning Achievement and Teacher-Student Interactions in Flipped and Conventional Classrooms. The International Review of Research in Open and Distributed Learning, 17, 79-99. https://doi.org/10.19173/IRRODL.V17I1.2116

Talan, T. (2021). Augmented Reality in STEM Education: Bibliometric Analysis. International Journal of Technology in Education. https://doi.org/10.46328/ijte.136

Tuluri, F. (2017). STEM Education by Exploring Robotics. 195-209. https://doi.org/10.1007/978-3-319-57786-9_8

Williams, A. E., & O’Dowd, D. (2020). Seven practical strategies to add active learning to a science lecture. Neuroscience Letters, 743. https://doi.org/10.1016/j.neulet.2020.135317

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2024 Multidisciplinary Latin American Journal (MLAJ)

Downloads